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Abstract. In this paper we expose a practical attack against a new hash function
design, FORK-256, which was proposed by Hong et al. at FSE 2006. Our attack
allows to find a collision against a 160-bit truncated version of the FORK-256 com-
pression function with a complexity of 249 hash computations and with negligible
memory. This has to be compared with the theoretical complexity 280 hash com-
putations given by the birthday paradox. Additionally, we expose a 1 bit (resp.
2-bit) near-collision attack against the full version of FORK-256 running with a
complexity of 2125 (resp. 2120) and with negligible memory, and exhibit a 22-bit
near collision. Finally, we discuss very recent independent results about FORK-256,
and show how our attack strategy can be used to improve upon these results to yield
a collision against the complete version of FORK-256 with a complexity of 2106 hash
computations and about 264 memory.

1 Introduction

Cryptographic hash functions are essential primitives for the secure deployment of many
protocols and applications in the digital world. Hash functions map binary strings of arbi-
trary length to a binary string of fixed length n. For a hash function H to be cryptograph-
ically secure, three properties have to be fulfilled, respectively called preimage resistance,
second preimage resistance, and collision resistance. Preimage resistance is the computa-
tional difficulty, given any hash value y, to find an input string x such that H(x) = y.
Second preimage resistance is the computational difficulty, given a hash value y and an in-
put string x such that H(x) = y, to find another input string z for which H(z) = y. Finally,
collision resistance is the computational difficulty to find two distinct inputs mapping to
the same output through H. By computational difficulty, we mean that there is no attack
better than the generic ones: to find a collision requires at least 2n/2 hash computations,
and to find a preimage or a second preimage requires at least 2n hash computations, where
the length of H’s output is n bits. A common way to build a hash function is to use the
Merkle and Damg̊ard iteration paradigm [4, 19]: the hash function H consists in iterating a
compression function h that maps a chaining variable of size n bits together with a block of
size m bits of the message to be hashed to the next value of the chaining variable. The hash
output is the value of the chaining variable at the end of the iteration process. It can be
proven that the hash function H is then at least as resistant as its underlying compression
function to collision, but recent cryptanalytic work has shown the limits of this iteration
scheme for more complex security notions [11, 9].
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Three main strategies can be identified in the design of cryptographic hash functions:
hash functions based on block ciphers, hash functions whose security relates to some hard
problem, and dedicated designs. There has been several proposals from this last category
through the years: MD4 [24] and MD5 [25], RIPEMD [7], and SHA-0, SHA-1 [21] to name
a few, of which MD5 and SHA-1 may be the most vastly deployed. However, some recent
results [27, 28, 2, 1, 5] have shown that these functions are far from behaving like ideal hash
functions, since there exist attacks much faster than the generic ones. As a consequence,
new hash function proposals have been made to prevent this new type of attacks. This is
the case of FORK-256 [8], which was proposed at FSE 2006 and at the first NIST Workshop
on hash functions.

The paper is organized as follows. In the next section, we quickly describe the FORK-
256 hash function proposal. Then, we expose the technical elements that we use throughout
our attacks. The description of our main algorithm follows, that allows to cancel 160 prede-
termined output difference bits of the FORK-256 hash function. We also expose two ways
of using this result to attack FORK-256. Finally, we discuss the results that appeared very
recently in [15] and improve upon them to compute a collision against the complete version
of FORK-256 in 2106 hash computations and 264 memory.

2 Description of FORK-256

This section briefly describes the design of the FORK-256 hash function as proposed
at FSE 2006 by Hong et al. in [8]. For further details, we refer the reader to the original
article. We hereafter use ‘⊕’ to denote bitwise exclusive or, ‘+’ to denote integer addition
modulo 232, and w<<<k to denote the word w cyclically rotated by k bit positions to the
left. The hash function FORK-256 follows the iteration principle proposed by Merkle [19]
and Damg̊ard [4], and its compression function hashes a 512-bit message block M at each
iteration and uses a 256-bit chaining variable cvn. The name of FORK-256 comes from
the fact that the internal state is modified simultaneously in four parallel streams, and
the four corresponding outputs h1, . . . , h4 are recombined via h′ = (h1 + h2)⊕ (h3 + h4)
just before applying a feed-forward which produces the output cvn+1 = h′ + cvn of the
compression function, as shown in Fig. 2 in App. B. To process the 512-bit message M
with the chaining variable cvn, M is first subdivided into sixteen 32-bit words M0, M1,
. . . , M15. The processing applied in each of the four streams is the same: it consists of eight
iterations of a step transformation on an internal state. The internal state consists of eight
32-bit words denoted by (A, B, C, D, E, F , G, H), and the step transformation involves
several parameters such as varying constants αj,r and βj,r (defined in Table 5 of App. B),
and two 32-bit words Mi and Mj from M . These words Mi and Mj are chosen depending
on the stream number and the round number according to the rules of Table 4: basically,
a permutation σj is applied in stream j to select the sub-blocks Mσj(2i) and Mσj(2i+1) at
round i. The step transformation itself is pictured in Fig. 1. It operates on the internal
state that was initially set to the value of the chaining variable. The internals are built
around the two following non-linear 32-bit word to 32-bit word functions f and g:

f(x) = x+ (x<<<7 ⊕ x<<<22), g(x) = x⊕ (x<<<13 + x<<<27). (1)

In the following, we denote by Aj,r, . . . , Hj,r, words of the internal registers of stream j,
after step r. The words A0, . . . , H0, denote the common initial state of the registers, and
there are eight rounds in each of the four streams.
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Fig. 1. Internals of FORK-256’s step function for stream j, j = 1, . . . , 4. The message blocks used
at round r are Mσj(2r−1) and Mσj(2r). (The permutation σ is given in Table 4 while the additional
values α and β are constants defined in Table 5 given in App. B.)

3 Preliminary properties of FORK-256

As seen in the previous section, FORK-256 uses four parallel streams operating on the
same initial state (or cvn) and using the same blocks of messages but in a different order.
This seems to be the strength of FORK-256 since the two first reported efforts to break it
were limited to two of the four streams [16, 15]. In the work of [16], a collision is exhibited
for a reduced version of FORK-256 with two streams. In the study [15] another technique
is used to provide a chosen IV collision for the same reduced version of FORK-256 with
two streams. But [15] was later on expanded to include an attack against the full version
of FORK-256.

In this paper, we present an independent analysis resulting in a 1-bit near-collision
attack against a reduced version of FORK-256 keeping all of its four streams, but with
seven rounds instead of the eight rounds of the original hash function. Moreover, we show
in a later section how to use this result to attack the complete FORK-256 hash function.
Along with those independent results, we also improve upon a very recent addition to [15]
(which we show to contain flaws) in the last section.

3.1 Differential characteristics

As noted above, the main difficulty in cryptanalysing FORK-256 comes from the fact that
the same message blocks are input in each of the four streams in a permuted fashion.
Thus, while one or maybe two streams may be easily dealt with, the effect of the difference
is difficult to cancel in the remaining streams. There are however at least two specific



differential characteristics of interest. The first one, as noted by [20] and [16], overcomes

Table 1. A four steps differential pattern to force an inner collision for FORK-256. The table
shows the pattern in one stream and its probability to occur for each round.

step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆ML ∆MR Prob.

in δ δ δ δ δ δ δ δ −δ −δ

1 δ 0 δ δ δ 0 δ δ −δ −δ Pδ
6

2 δ 0 0 δ δ 0 0 δ −δ −δ Pδ
4

3 δ 0 0 0 δ 0 0 0 −δ −δ Pδ
2

out 0 0 0 0 0 0 0 0 1

the issue by applying the same additive difference δ to every message block. Hence, just
after the fourth step has been completed, if the internal state has the same difference δ on
all of its eight 32-bit words, there is a collision after round eight. This behavior, summarized
in Table 1, renders the use of four streams with message reordering as a means to protect
against differential analysis ineffective since the same difference is applied to every message
block and the same differential pattern is occurring simultaneously in the four streams.
The probability Pδ is the probability that the difference δ propagates without modification
in one step. (It does propagates without modification when it enters the round in the
register A or the register E of the internal state, but with probability Pδ otherwise.) This
probability can be computed exactly for any given difference δ, and this computation is
given in App. A. The overall probability for the differential pattern of Table 1 to occur is
thus P 12

δ for each stream.

Table 2. A seven steps differential pattern to get an inner near-collision for FORK-256.

step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆ML ∆MR Prob.

in 0 δ 0 0 0 0 0 0 0 0
1 0 0 δ 0 0 0 0 0 0 0 Pδ

2 0 0 0 δ 0 0 0 0 0 0 Pδ

3 0 0 0 0 δ 0 0 0 0 0 Pδ

4 0 0 0 0 0 δ 0 0 0 0 P ′

5 0 0 0 0 0 0 δ 0 0 0 Pδ

6 0 0 0 0 0 0 0 δ 0 0 Pδ

out δ 0 0 0 0 0 0 0 Pδ

Another way to deal with the four streams simultaneously is to apply a difference on
the IV instead of the message M . This specific type of collision is called a pseudo-collision,
and can be expressed as follows for the compression function h of any iterated hash function:
h(IV,M) = h(IV ′,M ′) where (IV ′,M ′) 6= (IV,M). In the case of FORK-256, differences
in the words of the internal state register do not diffuse identically, see the description of the
internals of FORK-256’s step function in Fig. 1. More precisely, only the differences in the
words A and E will spread to the other registers in the next round. The other differences
(in the words B, C, D, F , G, H) only shift one word to the right. Hence, by applying a
difference to the second word of the IV , the difference propagates without spreading during



three rounds1. (Note that it propagates without being modified with probability Pδ only,
just as for the first differential pattern. This comes from the fact that it has to pass through
a ‘⊕’. Indeed, additive differences do not propagate without modification whenever ‘⊕’ are
used in the design of the hash function—just as xor differences do not propagate without
modification whenever ‘+’ are used. Again, for the exact computation of probability Pδ for
a given difference δ, we refer the interested reader to App. A.) During the fourth round
however, the difference spreads a priori to the three internal registers F , G, and H in all
four streams, with some probability (1 − P ′). We show in paragraph 3.2 that there is a
way to prevent such a spreading of the difference with probability 1. Then, the difference
again propagates during three rounds without spreading. As a result, for a difference with
a low Hamming weight, we obtain a near-collision at the seventh round of FORK-256. In
Section 5, we show how to take advantage of this fact to attack the real FORK-256.

3.2 Getting through the fourth round or how to make P ′ = 1

The main obstacle to the realisation of the seven rounds pattern is to prevent the difference
from spreading at the fourth round. Remember that the spreading can occur both at the
left side or at the right side of FORK-256’s internal step transformation. The technique to
prevent this spreading is the same at the left or at the right side: only f and g are swapped,
and some constants changed, see Fig. 1. In the following, we focus on the right side, but
the same work can be done on the left side. To put the spreading problem into equation:

Problem 1 (Spreading Problem). Given rotations values ρf and ρg together with a
constant β, is there any tuple of values (x, x∗, y) such that x 6= x∗ and(

g(x)<<<ρg + y
)
⊕

(
f(x+ β)<<<ρf

)
=

(
g(x∗)<<<ρg + y

)
⊕

(
f(x∗ + β)<<<ρf

)
? (2)

This problem has been somehow studied in [16, 15] but here we give another strategy
to solve it, especially suited to our attack. The authors of [15, 16] both suggest a first way
that partially answer this problem. They look for input values x and x∗ such that:

g(x) = g(x∗), f(x+ β) = f(x∗ + β). (3)

Depending on the value of the constant β, such a pair (x, x∗) may or may not exist. The
authors of [16] call the constants β such that there exists at least one pair fulfilling Eq. 3
weak constants. In our attack however, we are interested in weak constants involved in the
fourth round, that is β1,3, β2,3, β3,3, and β4,3. Unfortunately, [16, 15] show that none of
these are weak constants.

A restricted version of the initial problem of difference spreading is when the differ-
ence δ = x∗−x is fixed and the problem becomes to find a solution (x, y) to Eq. 2. A natural
strategy is to perform an exhaustive search on x so that if a = g(x)<<<ρg , b = g(x+ δ)<<<ρg ,
c = f(x+ β)<<<ρf , and d = f(x+ δ + β)<<<ρf , the problem amounts to finding y satisfying

(a+ y)⊕ c = (b+ y)⊕ d, (4)

where a, b, c, and d are fixed values. This last equation is easily solved considering the
following argument. This equation has a solution only if the lowest significant bits of each
1 In our first kind of attacks, we only use a difference in the second word of the IV and no

difference at all in the message blocks.



word satisfy: a0 ⊕ c0 = b0 ⊕ d0. (We use the notation wi for the i-th lowest significant bit
of word w.) The same reasoning can obviously be applied iteratively to the next lowest
bits, but now a carry has to be taken into account. Let us call l1 and r1 the carry from
the left member and the right member respectively. Again, Eq. 4 has a solution only if
a1⊕ c1⊕ l1 = b1⊕d1⊕ r1, where l1 = a0y0 and r1 = b0y0. Thus, at the i-th bit stage, Eq. 4
admits a solution only if ai⊕ ci⊕ li = bi⊕di⊕ ri, where li = ai−1yi−1⊕ai−1li−1⊕ li−1yi−1

and ri = bi−1yi−1 ⊕ bi−1ri−1 ⊕ ri−1yi−1.
Now the solving algorithm is pretty straightforward: at each step i, check if the corre-

sponding equation ai⊕ci⊕li = bi⊕di⊕ri is consistent for all possible pairs of carries (li, ri).
If not, halt with the result “there is no solution.” Else, compute the set of all corresponding
carries li+1 and ri+1 for the next step for both possible values of yi and for all pairs of
valid carries (li−1, ri−1) from the last step. Since at any step, the cardinality of the set of
possible carries (li, ri) is only four, there is only a small set of checks to do at each steps.
If the algorithm arrives at the most significant bit level, there is at least a solution which
is obtained by inspecting backward pairs of carries that have not been invalidated and
choosing corresponding values of yi.

Hence, there is an algorithm that solves the spreading problem for a fixed additive
difference δ = x∗ − x with time complexity 232 and with constant memory, by testing all
possible values of x. Actually, we are interested in obtaining a solution of the spreading
problem for a fixed difference δ, but with each of the three pairs of rotations (ρf , ρg): (0, 0),
(5, 9), and (17, 21), together with each of the four constants β1,3, β2,3, β3,3, and β4,3 in turn.
This corresponds to the three threads mapping (F,G,H) to (G,H,A) in the four streams
of the fourth step of FORK-256, see Fig. 1. The algorithm goes exactly the same in this
case: for every possible value of x, it looks for a solution in each thread one after the other
to get a quadruplet (x, yF , yG, yH) of values so that the spreading of the fixed difference δ
is prevented in all threads simultaneously. We do this for the four streams independently.

4 Attacking a seven rounds reduced version of FORK-256

In the previous section we have seen that the seven rounds differential pattern of Table 2
with an additive difference δ happens simultaneously in the four streams with probability
P 12

δ as soon as the registers (E,F,G,H) reach a prescribed value at the fourth round in
the four streams. (Remember that Pδ is the probability that the additive difference goes
unmodified in when a ‘⊕’ is involved. Also, we do not care about the difference being
modified after the fourth round, because it never spreads again. So the factor 12 comes
from the fact that the difference has to go unmodified through the three first rounds in all
of the four streams.) We show here how to force these registers to take prescribed values.
These prescribed values are the four quadruplets of values computed to solve the spreading
problem at the fourth round of each of the four streams with the algorithm of Sec. 3.2.

4.1 Near collision at the seventh round

Our main tool here is a good scheduling in the determination of each message block so as
to be able to force the four quadruplets of each stream to their required values.

To this aim, we study the relationships between message blocks and IV blocks with
this last quadruplet. Before getting into deeper details of the attack, let us emphasize the
following fact that simplifies the study of these relationships in stream j: forcing the value



of the quadruplet (Ej,3, Fj,3, Gj,3,Hj,3) is equivalent to forcing the value of the quadruplet
(Ej,3, Fj,3, Fj,2, Fj,1). This fact can be easily checked by going backward in the threads
of FORK-256’s step transformation, which can be translated in the following sequence of
equations:

Fj,2 =
(
Gj,3 ⊕ f(Fj,3)

)
− g(Fj,3 − βj,2),

Gj,2 =
(
Hj,3 ⊕ f(Fj,3)<<<5

)
− g(Fj,3 − βj,2)<<<9,

Fj,1 =
(
Gj,2 ⊕ f(Fj,2)

)
− g(Fj,2 − βj,1).

(5)

Taking this remark into account, the Table 3 summarizes the relationships. In the
left column are printed the words of the quadruplets that we would like to force to some
predetermined value, and each row shows the dependence of one word in the message blocks
and IV registers.

Table 3. Relationship between the words of the quadruplets in each stream and the message
blocks and the IV . The symbols ‘*’ and ‘x’ both denote a degree of freedom to set the value
of a word W by adjusting the corresponding parameter P when all the remaining parameters of
the row have already been fixed. The ‘x’ is used to emphasize that the parameter P can be used
directly to set word W to its target value.

IV message block Mi

A B C D E F G H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E4,3 * x * * * * * * * x * *
E3,3 * x * * * * * * * x * *
E2,3 * x * * * * x * * * * *
E1,3 * x * * * * * * * * * x

F4,3 * x * * x * * *
F3,3 * x * * x * * *
F2,3 * x * * x * * *
F1,3 * x * * * * * x

G4,3 ↔ F4,2 * x * x
G3,3 ↔ F3,2 * x * x
G2,3 ↔ F2,2 * x x *
G1,3 ↔ F1,2 * x * x

H4,3 ↔ F4,1 x x
H3,3 ↔ F3,1 x x
H2,3 ↔ F2,1 x x
H1,3 ↔ F1,1 x x

In view of Table 3, we propose the following algorithm to sequentially assign values to
the message blocks and IV values so that the four quadruplets in all four streams actually
take the prescribed values. Adjustments are refinements of the algorithm introduced to help
the difference propagate without modification; for instance, by forcing the value entering
function g to be zero, we ensure that the difference propagates unmodified.

1. Initialize. Choose A0 randomly.

2. Adjust. Do the following four assignments: M0 = −(A0 + α1,0), M14 = −(A0 + α1,1),
M7 = −(A0 + α1,2), M5 = −(A0 + α1,3).

3. Force words Gj,3. Choose D0 so that F3,2 gets the correct value. Then, choose M3,
M9, and M8 in turn so that F1,2, F2,2, and F4,2 respectively gets their correct value.



4. Force words Hj,3. (If this step has been run 232 times, return to step 1.) Randomly
choose H0. Adjust M11 and M1 to prevent the difference from being modified in the
second round of FORK-256 in stream 2 and 4 respectively. Then, set the words E0,
M15, M6, and M12 so that F1,1, F2,1, F3,1, and F4,1 respectively gets their correct value.

5. Force words Fj,3. Set C0 so that F4,3 gets its correct value. Then, set M10 and M2 in
turn so that F2,3 and F3,3 respectively gets their correct value. Now, F1,3 is assigned
some random value. If this value is the correct one, continue to next step, otherwise,
return to step 4.

6. Force words E1,3, E2,3, and E4,3. (If this step has been run 232 times, return to step 1.)
Choose some random value for G0. Fix B0 so that E4,3 takes the correct value. Fix M4

so that E2,3 takes the correct value. Check the random value taken by E1,3: if this is
the expected value, continue to step 7, else go back to step 6.

7. Force word E3,3. (If this step has been run 232 times, return to step 1.) Choose some
random value for M13. Check the random value taken by E3,3: if this is the expected
value, output all messages Mi and all IV blocks. Otherwise, go back to step 7.

Notice that this algorithm makes a few independent exhaustive searches in spaces of
size 232. Almost no memory is required, and the average time complexity is 232 applications
of one fourth of FORK-256, that is about 230 computations of the hash function. Now, for
the attack to succeed, the difference δ has to propagate unmodified up to round 3. Since
the probability to propagate in one stream is Pδ, and taking into account the fact that we
took care of it in the first round (step 2 of the algorithm) and in two of the four streams
of the second round (step 4 of the algorithm), the overall probability is P 6

δ .
We eventually remark that the word F0 of the IV does not modify the four targeted

quadruplets. Hence, in the output of our algorithm, we can make F0 take any of the
232 possible values and the result remains valid. That is, our algorithm actually outputs
232 values (M, IV ), so that the registers Bj,7, Cj,7, Dj,7, Ej,7, Fj,7, Gj,7, Hj,7 of the
internal state reached in each of the four streams just before the eighth round is the same
whether (M, IV ) is processed or (M, IV ′) is processed, where IV ′ is equal to IV except for
B0 which is replaced by B0 + δ. Moreover, the registers Aj,7 carry an additive difference.

Finally, since our algorithm outputs 232 solutions with a complexity of 230 · P 6
δ hash

computations, the average cost of computing a solution pair is about P 6
δ .

4.2 Choosing the difference

In the two previous paragraphs, we saw that a useful difference has to fulfill two constraints.
The first one is that there must be a quadruplet solution to the spreading problem for the
four streams of FORK-256 in the fourth round. The second one is that its probability Pδ of
propagating without modification should be as high as possible. We checked all differences
with Hamming weights one and two, and we finally chose the difference δ = 0x00000404.
For this choice of difference we have Pδ of about 2−3, and a possible set of target values
for each stream is:

E1,3 = 0x030e9c3f, E2,3 = 0x7e24de5c, E3,3 = 0x00fa4d1e, E4,3 = 0x20b7363f,
F1,3 = 0xa4115fb0, F2,3 = 0x10276030, F3,3 = 0x35edee6e, F4,3 = 0xefc6172f,
G1,3 = 0x22c18168, G2,3 = 0x4db27e00, G3,3 = 0xd81cdc6c, G4,3 = 0x8c2c7c00,
H1,3 = 0x1816822c, H2,3 = 0x27e004db, H3,3 = 0xcdc6bd82, H4,3 = 0xc7bff8c3.



4.3 Near collision for a seven rounds reduced version of FORK-256

We focus on a seven rounds reduced version of FORK-256: the two additions, the xorings,
and the feed-forward are kept but the eighth round is removed. It may appear that we can
find a collision against this seven rounds reduced version of FORK-256. This is not exactly
true because of the final operations: the additions of the first two streams and the last two
streams, and the xoring of the result. Indeed, we have seen that a difference remains in the
internal registers Aj,7. Those differences might not be all the same, but their lowest bit
set to 1 exactly at the same position as the lowest bit of the difference δ that was initially
introduced, in our case the third lowest significant bit. These bits are shifted to the left by
the addition in the first two streams and the last two streams, and the xoring cancel them.
However, a differential bit reappears at the previous position due to the feed-forward, and
there is no way to get rid of it.

We thus seek 1 bit near collisions, the probability of which has been estimated as
follows. We chose a random internal state before the seventh round (i.e. the values A6, B6,
C6, and D6 in each of the four streams), and ran the seventh step transformation, plus the
recombination mechanism. After 232 experiments, there was, on the average, 8.96 non zero
bits. The probability of a 1 bit near-collision has been evaluated to 2−15 (127665 outputs out
of the 232 experiments were 1 bit near-collisions). Since the algorithm given in the previous
section outputs 232 correct values in 230 P 6

δ = 249 hash computations, the complexity to
find a set of 217 distinct 1 bit near collisions is about 249 hash computations.

5 Attacking the full version of FORK-256

Here we show how the previous attack can be extended to the complete FORK-256 hash
function. Moreover, we show a practical attack against the full hash function FORK-256
in the setting of truncations for compatibility purposes.

5.1 Attacking the full FORK-256

Recall that the algorithm given in the previous section outputs exactly 232 pairs for which
FORK-256’s outputs collide on four of the eight 32-bit words with a complexity of 249 hash
computations. It remains at least one bit of difference (at a fixed position) in the second
word and three 32-bit words to cancel.

Recall that the probability of a 1-bit near collision on the second word was experimen-
tally found to be 2−15. Cancelling any of the three remaining 32-bit words was experi-
mentally found to require an average of 231 trials for δ = 0x0000404. Since our algorithm
outputs a set of 232 pairs for a work factor of 249, the overall complexity to find a 1-bit
near collision is about 249+93+15−32 = 2125. Similarly, the probability to find a 2-bit near
collision was experimentally found to be less than 2−10 so that the overall complexity to
find a 2-bit near collision is about 249+93+10−32 = 2120.

5.2 Truncation proposals

In view of the recent attacks against hash functions, there have been several new proposals.
Those new hash function designs adopt a common consensus on the minimum size of their
output: 256 bits. The side effect is that there is a multitude of applications that will need



a compatibility mode with respect to the previously widely deployed designs like MD5 [25]
(128 bits) or SHA-1 [21] (160 bits). This issue has recently received some attention: it
is emphasized in [10], for instance, that current ECDSA/DSA key sizes, file formats and
standardized protocols currently rely on 128-bit or 160-bit hashes.

A natural approach to solve this problem is obviously to truncate the hash functions
having bigger outputs, and it is suggested in [10] that most people agree with this. This
intuition is supported by the fact that it can be proved to be a good approach in the
random oracle model. However, as it is pointed out in [10], there might be some concern
when the hash functions are practical functions in use and not perfect ideal ones. We show
in the next paragraph that natural truncations of FORK-256 would lead to huge security
concerns.

5.3 Attacking a truncated FORK-256

In the case of a 128-bit or even a 160-bit truncation of FORK-256, our attack becomes
practical. Indeed, our algorithm produces 232 pairs of inputs colliding on four of the eight
output blocks with a work factor of 249. Thus, a fifth word of the output can be forced to
collide for the same time complexity. It results in a pseudo-collision against two truncations
with a complexity of 249 hash computations, which has to be compared to the theoretically
expected complexity of 280 hash computations given by the birthday paradox.

5.4 Experimental results

Here we show a 2-bit near collision on a seven rounds reduced version of FORK-256 that
was obtained by running2 our algorithm given in Section 4.1 together with the difference
and the set of targets of Section 4.2:

IV = 0x8406e290 0x5988c6af 0x76a1d478 0x0eb60cea 0xf5c5d865 0x00001b09 0x528590bf 0xc3bf98a1

IV ′= 0x8406e290 0x5988cab3 0x76a1d478 0x0eb60cea 0xf5c5d865 0x00001b09 0x528590bf 0xc3bf98a1

M= 0x396eedd8 0x0e8c2a93 0xb961f8a4 0xf0a06fc6 0x9935952b 0xe01d16c9 0xddc60aa4 0x0ac1d8df

0xc6fef1d8 0x4c472ca6 0x58d9322d 0x2d087b65 0x7c8e1a26 0x71ba5da1 0xba5d2bfc 0x1988f929

which enables us to exhibit a corresponding 22-bit near collision against the complete
version of the FORK-256 hash function:

IV = 0x8406e290 0x5988c6af 0x76a1d478 0x0eb60cea 0xf5c5d865 0x458b2dd1 0x528590bf 0xc3bf98a1

IV ′= 0x8406e290 0x5988cab3 0x76a1d478 0x0eb60cea 0xf5c5d865 0x458b2dd1 0x528590bf 0xc3bf98a1

M= 0x396eedd8 0x0e8c2a93 0xb961f8a4 0xf0a06fc6 0x9935952b 0xe01d16c9 0xddc60aa4 0x0ac1d8df

0xc6fef1d8 0x4c472ca6 0x58d9322d 0x2d087b65 0x7c8e1a26 0x71ba5da1 0xba5d2bfc 0x1988f929

6 Additional remarks

In this section we show that the chosen IV collision attack suggested in [15] is flawed, but
that the original idea of [15] can however be extended by the same message sequencing
strategy that we used for our previous attacks. As a result, we show how to produce
collisions against the complete FORK-256 hash function with a complexity of 2106 hash
computations.
2 We ran our algorithm on eight dual core processors running at about 2.5 GHz for two weeks



6.1 The original idea

This paragraph sketches the original result of [15]; we refer the reader to this paper for
further details. The idea of [15] is to put an additive difference to the message block M12

only. According to Table 4, this message block only appears in the seventh round of the first
stream and the last round of the second stream. Hence, its effect will be local to four 32 bit
blocks of the output. The aim of the attack described in [15] is thus to solve the spreading
problem for the obtained differences in the third and fourth stream simultaneously. The
very interesting fact about this attack is that there is no difference on the IV and hence,
the possibility to find a real collision on FORK-256 remains open. Actually, the authors
of [15] use four words of the IV to solve the spreading problems so that the attack will
result in a collision with a chosen IV .

In order to solve the spreading problem they find a sequencing to set the message blocks
in two steps: M5, M1, M8, M15, M0, M13, and M3

3 first (which handles the case of the
fourth stream), and then M2, M14, M13, M6, M10, and B0 or IV [1] (which handles the
case of the third stream). This second sequence of assignments tweaked at least the correct
values of M3 and M13. But those two values were already set to solve the spreading problem
in the fourth stream. If the issue can be easily corrected in the case of M3 by adjusting M11

which has no influence during the four first rounds in the third stream, the case of M13 is
much more problematic.

6.2 Correcting the M13 issue and other improvements

In this paragraph, we suggest several improvements to fix the M13 issue as well as to lower
the overall complexity of the attack.

First, let us study the spreading process when no difference is involved. During the
step transformation, the eight registers are dealt with four by four: (A,B,C,D) on the
one hand, (E,F,G,H) on the other hand. If we restrict our attention to four of them, let
us say (E,F,G,H), we immediately see that the block message M acting on the input
register E allows to set the output register F to any value. But what about the action
of this message block on one of the three other register, like say, the output register H?
The answer is that, on the average, for any input register G, there exists a value of the
message block such that the output register H takes any prescribed value. That is because
for a fixed value of β, the function ψG : y 7→

(
g(y)<<<9 + G

)
⊕ f(y + β)<<<5 is almost a

bijection for all values of G. Hence, for any fixed value of the output register H a table
TH can be built that stores values (G, y) such that ψG(y) = H. This table can be built
during a precomputation step in time 232 with 232 memory. By building 232 such tables
(one for every possible value of H), it is then possible, for any given pair (G,H), to find a
message so that G is indeed transformed into H during one half of the step transformation.
The cost of the precomputation is now 264 both in time and memory, but the access is in
constant time. Obviously, such a table can be used via the freedom given by the incoming
message block, to fix the value of one of the thread F → G, G→ H, H → A only.

In the following attack, we use several such tables. The first one, T10, is used to control
the thread C3,1 → D3,2 through M10, that is M10 = T10(C3,1, D3,2). Another familly
of tables, T9,a, is used to determine what value of M9 produces the expected transition

3 M3 is actually dependent of IV [1] = B0



E1,4 → A1,6 given a fixed M11, that is M9 = T9,a(E1,4,M11) so that A1,6 = a, where a is
some fixed value. (We will use 253 such tables.)

Our attack strategy has the same goal as [15]: inject an additive difference in M12

only. To this end, we construct a sequencing allowing to set the message blocks in a way
that removes the above mentioned issues, and contrary to what is done in [15], we follow
the same strategy as in our previous attack: we aim to force the values of the quadruplets
entering the right side of the fourth round in third stream, the right side of the first round in
fourth stream and the left side of the fifth round in fourth stream. Those three quadruplets
are distinct ones, because of the varying constants and the alternating role of f and g.
We assume that the additive difference in register A4,4 is the same as the one injected
in M12. Additionally, we note that for the difference δ = 0xdd080000, there are exactly
253 values of a so that the difference δ does not spread from A1,6 to E1,7. For instance,
a−M12 = 0xe8db2d4b is such a value.

1. Initialize. Set M12, F0, G0, H0, to correct values for top quadruplet of stream 4.

2. Fourth stream. Set M1 to fix B4,2 to its correct value. Choose a random M5. Adjust
M8 so that difference δ propagates unchanged. Set M15 to fix B4,3 to its correct value.
Adjust M0 so that difference δ propagates unchanged. Set M13 to fix B4,4 to its correct
value. Adjust M11 so that difference δ propagates unchanged, and set M3 to fix A4,4

to its correct value. (Quadruplet of stream 4 is correct.)

3. Third stream. Set M6 to fix F3,1 to its correct value. Choose M7 randomly. Set M14

to fix F3,2 to its correct value. Use the hash table T10 to set M10 so that E3,3 gets its
correct value. (This is possible for M5, M7, M13, and M14 are already fixed.) Set M2

to fix F3,3 to its correct value. (Quadruplet of stream 3 is correct.)

4. First stream. Choose M4 randomly. Using hash table T9,a for some value of a, decide
which value M9 will lead to a value of A1,6 equal to a. This value prevents the difference
onM12 from spreading into E1,7 with probability 2−8. If the difference spreads into E1,7,
restart step 4 with another value of a. Since there are 253 such values, difference in
stream 1 does not spread to E1,7 with high probability.

The complexity of this algorithm is about one fourth of a FORK-256 computation,
with a precomputation step of complexity about O(264) in time and memory. For the
difference 0xdd080000, the authors of [15] have shown that at most 108 bits may differ, so
we conclude that our algorithm has to be run about 2108 times to get a collision, which
amounts to about 2106 FORK-256 computations.

6.3 A collision on FORK-256

In contrast with [15], we note here that we do not have to fix the IV to a specific value to
produce the collision. Indeed, in [15], four 32-bit words had to be chosen, while our attack
only needs three 32-bit words to be chosen. Thus, the complexity to find a message M so
that h(IV0,M) = IV where IV has the three expected 32-bit words and IV0 is FORK-
256’s original initial vector is 296 and can be done in a precomputation step, along with the
choice of M12 and the computation of the tables. Our attack then finds a pair (M ′,M ′′)
of 512-bit message so that in the end H(IV0,M ||M ′) = H(IV0,M ||M ′′). The complexity
of the whole attack is thus 2106.



7 Conclusion

We presented several attacks against a new hash function proposal, FORK-256. The first
one is a practical attack against a truncated version of FORK-256 that requires 249 hash
computations. The second one is a 2-bit near collision – with predetermined positions
– against FORK-256 in 2120 hash computations. The third one improves upon [15] to
construct a collision against FORK-256 in 2106 hash computations with 264 memory instead
of 2128 theoretically.
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A Propagation of additive differences through ‘⊕’

When studying the internal step transformation of FORK-256, the problem appears of
computing the probability that a given additive difference propagates through a ‘⊕’ without
being modified. An even more general version of this problem has already been studied at
FSE 2004 by Lipmaa, Wallén, and Dumas [14]. We give hereafter a much weaker version
of their result that fits our needs:

Property 1. Given any 32-bit word δ, the probability Pδ = Prx,y

[(
(x+ δ)⊕ y

)
=

(
x⊕ y

)]
where elements x and y are 32-bit words can be expressed as the following matrix product:

Pδ = L×Mδ31 ×Mδ30 × · · · ×Mδ0 × C, (6)

where δi denotes the i-th bit of δ and L, C, M0, and M1 are defined as:

M0 =
1
4



4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


, M1 =

1
4



1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 4 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0


,

L = (1 0 0 0 0 0 0 0 ) , TC = (1 1 1 1 1 1 1 1 ) .

B Additional data for FORK-256’s description

stream
1

Mσ1(·)

stream
2

Mσ2(·)

stream
3

Mσ3(·)

stream
4

Mσ4(·)

cvn+1

cvn

Fig. 2. FORK-256



Table 4.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ2(i) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1
σ3(i) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3
σ4(i) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

Table 5. Constants involved in the step transformation.

step r α1,r β1,r α2,r β2,r α3,r β3,r α4,r β4,r

0 δ0 δ1 δ15 δ14 δ1 δ0 δ14 δ15

1 δ2 δ3 δ13 δ12 δ3 δ2 δ12 δ13

2 δ4 δ5 δ11 δ10 δ5 δ4 δ10 δ11

3 δ6 δ7 δ9 δ8 δ7 δ6 δ8 δ9

4 δ8 δ9 δ7 δ6 δ9 δ8 δ6 δ7

5 δ10 δ11 δ5 δ4 δ11 δ10 δ4 δ5

6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3

7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1

δ0 = 0x428a2f98 δ4 = 0x3956c25b δ8 = 0xd807aa98 δ12 = 0x72be5d74

δ1 = 0x71374491 δ5 = 0x59f111f1 δ9 = 0x12835b01 δ13 = 0x80deb1fe

δ2 = 0xb5c0fbcf δ6 = 0x923f82a4 δ10 = 0x243185be δ14 = 0x9bdc06a7

δ3 = 0xe9b5dba5 δ7 = 0xab1c5ed5 δ11 = 0x550c7dc3 δ15 = 0xc19bf174


