
Traitor Tracing with Constant Size Ciphertext

Dan Boneh∗ Moni Naor

February 22, 2008

Abstract

A traitor tracing system enables a publisher to trace a pirate decryption box to one of the
secret keys used to create the box. We present the first traitor tracing system where ciphertext
size is “constant,” namely independent of the number of users in the system and the collusion
bound. A ciphertext in our system consists of only two elements where the length of each element
depends only on the security parameter. The down side is that private-key size is quadratic in
the collusion bound. Our construction is based on recent constructions for fingerprinting codes.

1 Introduction

Traitor tracing systems, introduced by Chor, Fiat, and Naor [7], help content distributors identify
pirates who violate copyright restrictions. To be concrete, consider a satellite radio system (such
as XM Satellite Radio) where broadcasts should only be played on certified radio receivers. We let
n denote the total number of radio receivers and assume that each receiver contains a unique secret
key: radio receiver number i contains secret key sk i. Broadcasts are encrypted using a broadcast
key bk and any certified receiver can decrypt using its secret key. Certified players, of course, can
enforce digital rights restrictions such as “do not copy” or “play once”.

Clearly a pirate could hack a number of certified players and extract their secret keys. The
pirate could then build a pirate decoder PD that will extract the cleartext content and ignore
any relevant digital rights restrictions. Even worse, the pirate can make its pirate decoder widely
available so that anyone can extract the cleartext content for themselves. DeCSS, for example, is
a widely distributed program for decrypting encrypted DVD content.

This is where traitor tracing is helpful — when the pirate decoder PD is found, the distributor
can run a tracing algorithm that interacts with the pirate decoder and outputs the index i of at
least one of the keys sk i that the pirate used to create the pirate decoder. The distributor can then
choose to take action against the owner of this sk i.

A precise definition of traitor tracing systems is given in [3] and is reproduced here in Ap-
pendix A. For now we give some intuition that will help explain our results. A traitor tracing
system consists of four algorithms Setup,Encrypt,Decrypt, and Trace. The Setup algorithm gen-
erates the broadcaster’s key bk , a tracing key tk , and n recipient keys sk1, . . . , skn. The Encrypt
algorithm encrypts the content using bk and the Decrypt algorithm decrypts using one of the sk i.
The tracing algorithm Trace is the most interesting — it takes tk as input and interacts with a

∗Supported by NSF and the Packard Foundation.

1

pirate decoder, treating it as a black-box oracle. It outputs the index i ∈ {1, . . . , n} of at least one
key sk i that was used to create the pirate decoder.

We will describe our system as a public-key system, namely we assume that bk is public. As
in many traitor tracing constructions, the tracing key tk in our system must be kept secret. Our
tracing algorithm is black-box, namely it need not look at the internals of the pirate decoder PD .
The tracing algorithm only interacts with PD as if it were a decryption oracle.

a traitor tracing system is said to be t-collusion resistant if tracing will work as long as the
pirate has fewer than t user keys at his disposal. If t = n the system is said to be fully collusion
resistant. While ciphertext-size in our system is independent of n or t, private-key size is quadratic
in t. More precisely, our system provides the following parameters as a function of the total number
of users n, collusion bound t, and security parameter λ:

CT-len = O(λ) ; SK-length = O(t2λ2 log n) ; Tracing-time = O(t2λ log n)

Setting t ← n gives the parameters for full collusion resistance. Note that ciphertext length is
independent of n or t.

Related work. Traitor tracing systems have been studied extensively. We refer to [3] for various
properties of traitor tracing systems. Traitor tracing constructions generally fall into two categories:
combinatorial, as in [7, 21, 28, 29, 10, 11, 8, 25, 1, 27, 26, 20], and algebraic, as in [18, 2, 22, 17, 9,
19, 31, 6, 3, 5]. The broadcaster’s key bk in combinatorial systems can be either secret or public.
Algebraic traitor tracing use public-key techniques and are often more efficient than the public-key
instantiations of combinatorial schemes. In these systems the ciphertext length (for short messages)
depends linearly on the collusion bound t. One exception is [3] which is fully collusion resistant
with ciphertext size O(

√
n).

Some systems, including ours, only provide tracing capabilities. Other systems [22, 20, 14, 12, 9,
5] combine tracing with broadcast encryption to obtain trace-and-revoke features — after tracing,
the distributor can revoke the pirate’s keys without affecting any other legitimate decoder.

Kiayias and Yung [17] describe a black-box tracing system that achieves constant rate for
long messages, where rate is measured as the ratio of ciphertext length to plaintext length. For full
collusion resistance, however, the ciphertext size is linear in the number of users n. For comparison,
our new system generates ciphertexts of constant size and achieves constant rate (rate = 1) for long
messages by using hybrid encryption (i.e. encrypting a short message-key using the traitor tracing
system and encrypting the long data by using a symmetric cipher with the message-key).

In most traitor tracing systems, including ours, the tracing key tk must be kept secret. Some
systems, however, support public key tracing [23, 24, 32, 16, 6].

Stateful vs. Stateless decoders: a stateless decoder is one that does not keep state between de-
cryptions. For instance, software decoders, such as DeCSS, cannot keep any state. However, pirate
decoders embedded in tamper resistant hardware, such as a pirate cable box, can keep state be-
tween successive decryptions. When the decoder detects that it is being traced it could shutdown
and refuse to decrypt further inputs. A software decoder cannot do that. Kiayias and Yung [15]
show how to convert any tracing system for stateless decoders into a tracing system for stateful
decoders by embedding robust watermarks in the content. Consequently, most tracing systems in
the literature, as do we, focus on the stateless settings and ignore the stateful case.

2

2 Collusion resistant fingerprinting codes

Before describing our construction we first review the definition of collusion resistant fingerprinting
codes from [4]. Collusion resistant codes are primarily used for fingerprinting digital content. Here
we will use them to construct a traitor tracing system with short ciphertexts. We are only interested
in binary codes, namely codes defined over {0, 1} (as opposed to a larger alphabet).

• For a word w̄ ∈ {0, 1}` we write w̄ = w1 . . . w` where wi ∈ {0, 1} is the ith letter of w̄ for
i = 1, . . . , `.

• Let W = {w̄(1), . . . , w̄(t)} be a set of words in {0, 1}`. We say that a word w̄ ∈ {0, 1}` is
feasible for W if for all i = 1, . . . , ` there is a j ∈ {1, . . . , t} such that w̄i = w̄

(j)
i . For

example, if W consists of the two words:(
0 1 0 1 0
0 0 1 1 1

)
then all words of the form

[
0
(
0
1

)(
0
1

)
1
(
0
1

)]
are feasible for W .

• For a set of words W ⊆ {0, 1}` we say that the feasible set of W , denoted F (W), is the set
of all words that are feasible for W .

A fingerprinting code is a pair of algorithms (G, T) defined as follows:

• Algorithm G, called a code generator is a probabilistic algorithm that takes a pair (n, ε) as
input, where n is the number of words to output and ε ∈ (0, 1) is a security parameter. The
algorithm outputs a pair (Γ, tk). Here Γ (called a code) contains n words in {0, 1}` for some
` > 0 (called the code length). The output tk is called the tracing key.

• Algorithm T , called a tracing algorithm, is a deterministic algorithm that takes as input a
pair (w̄∗, tk) where w̄∗ ∈ {0, 1}`. The algorithm outputs a subset S of {1, . . . , n}. Informally,
elements in S are “accused” of creating the word w̄∗.

We require that G and T run in polynomial time in n log(1/ε).
Security of a fingerprinting code (G, T) is defined using a game between a challenger and an

adversary. Let n be an integer and ε ∈ (0, 1). Let C be a subset of {1, . . . , n}. Both the challenger
and adversary are given (n, ε, C) as input. Then the game proceeds as follows:

1. The challenger runs G(n, ε) to obtain (Γ, tk) where Γ = {w̄(1), . . . , w̄(n)}. It sends
the set W := {w̄(i)}i∈C to the adversary.

2. The adversary outputs a word w̄∗ ∈ F (W).

We say that the adversary A wins the game if T (w̄∗, tk) is empty or not a subset of C.
Let CR Adv[(G(n, ε), T, C),A] be the probability that A wins the game.

Definition 1. We say that a a fingerprinting code (G, T) is fully collusion resistant if for all
adversaries A, all n > 0, all ε ∈ (0, 1), and all subsets C ⊆ {1, . . . , n}, we have that

CR Adv[(G(n, ε), T, C),A] < ε

We say that (G, T) is t-collusion resistant if for all adversaries A, all n > t, all ε ∈ (0, 1), and
all subsets C ⊆ {1, . . . , n} of size at most t, we have

CR Adv[(G(n, ε), T, C),A] < ε

3

2.1 Known results on collusion resistant codes

Boneh and Shaw [4] constructed a fully collusion resistant fingerprinting code as well as t-collusion
resistant codes. G. Tardos [30] improved these results by constructing shorter codes. The resulting
code lengths are summarized in the following table.

Boneh-Shaw [4] G. Tardos [30]

Full collusion resistance ` = O
(
n3 log(n/ε)

)
` = O

(
n2 log(n/ε)

)
t-collusion resistance ` = O

(
t4 log(n/ε) log(1/ε)

)
` = O

(
t2 log(n/ε)

)
` is the length of the code obtained by running G(n, ε)

Throughout the paper, except for Section 4, we will primarily rely on the construction of G.
Tardos [30].

We note that Chor et al. [7] constructed collusion resistant codes; however, their codes are
defined over a much larger alphabet, namely Γ is a subset of {1, . . . , t}` rather than {0, 1}`. For
the application we have in mind it is crucial that we use a fingerprinting code defined over a binary
alphabet. Other constructions over large alphabets include [28, 29, 11, 27, 26]

3 A traitor-tracing system with short ciphertexts

Let E := (Genc , Eenc , Denc) be a public-key encryption system. Let (Gtt , Ttt) be a fingerprinting
code. Our traitor tracing system TT works as follows:

Setup(n, λ): Let ε := 1/2λ. The algorithm works as follows:

1. Generate a fingerprinting code by running (Γ, tk) R← Gtt(n, ε).
Let Γ = {w(1), . . . , w(n)} ⊆ {0, 1}`.

2. Generate 2` public/secret key pairs by running Genc 2` times:

for i = 1, . . . , ` and j = 0, 1 do: (pk [i, j], sk [i, j]) R← Genc(λ)

3. For i = 1, . . . , n define

sk i ←
(

w̄(i), sk [1, w
(i)
1], . . . , sk [`, w(i)

`]
)

.

An example secret key is shown in Figure 1.

4. Define bk ←
(
pk [1, 0], pk [1, 1], . . . , pk [n, 0], pk [n, 1]

)
5. Output bk , tk , and (sk1, . . . , skn)

Encrypt(bk ,m): Choose random j
R← {1, . . . , `} and compute

c0
R← Eenc(pk [j, 0],m), c1

R← Eenc(pk [j, 1],m)

output c← (j, c0, c1). Note that the ciphertext is short.

4

w̄(i) sk i

0 sk [1, 0] sk [1, 1]

1 sk [2, 0] sk [2, 1]

0 sk [3, 0] sk [3, 1]
...

...
0 sk [`, 0] sk [`, 1]

Figure 1: An example secret key

Decrypt
(
i, sk i, (j, c0, c1)

)
: if w

(i)
j = 0 output Denc(sk [j, 0], c0) else output Denc(sk [j, 1], c1).

The tracing algorithm: intuition. Suppose the adversary obtains a set of t secret keys and
uses them to build a pirate decoder PD . We assume PD is a useful decoder, namely it correctly
decrypts well-formed ciphertexts. The t keys at the adversary’s disposal corresponds to t words
in the fingerprinting code Γ ⊆ {0, 1}`. Let C ⊆ {0, 1}` be the set containing these t words. Now,
consider a particular j ∈ {1, . . . , `} and consider the invalid ciphertext

c∗ :=
(
j, Eenc(pk [j, 0], m), Eenc

(
pk [j, 1], 0)

)
Here m is some message not equal to 0. This ciphertext is invalid since we encrypted a different
message under pk [j, 0] and pk [j, 1]. Let us consider what happens when we run PD on c∗. We are
interested in two cases.

• Case 1: Suppose all t codewords in C contain a 1 in position j. Then the adversary does
not have sk [j, 0] and therefore PD(c∗) will return a quantity different than m with high
probability.

• Case 2: Suppose all t codewords in C contain a 0 in position j. Now the adversary does not
have sk [j, 1] and therefore PD cannot distinguish c∗ from a well-formed ciphertext. Conse-
quently, PD(c∗) will return m (otherwise PD is not a useful pirate decoder).

To make use of these two observations, let us define ` experiments, denoted by TRj for j = 1, . . . , `.
Experiment TRj is defined as follows: (we letM denote the finite message space of the public-key
system E)

m
R←M

c0
R← Eenc

(
pk [j, 0], m

)
, c1

R← Eenc

(
pk [j, 1], 0

)
c∗ ← (j, c0, c1)
m̂← PD(c∗)

Define wj ∈ {0, 1} as follows:

wj :=

{
0 if m = m̂, and
1 otherwise.

(1)

5

The argument in Case 1 suggests that if all words in C have a 1 is position j then wj = 1. The
argument in Case 2 suggests that if all words in C have a 0 is position j then wj = 0. It follows
that the word

w̄∗ := w1 . . . w` ∈ {0, 1}` (2)

is in the feasible set F (C). But then running the tracing algorithm Ttt of the collusion resistant
code on input w̄∗ will output the identity of at least one of the words in C, which is also the identity
of one of the keys in the pirate’s possession.

The tracing algorithm. To make the intuition above rigorous, we spell out the tracing algo-
rithm. The tracing algorithm TracePD(tk) works as follows:

1. For each j in {1, . . . , `} run experiment TRj once.

2. Define the word w̄∗ as in equations (1) and (2).

3. Output Ttt(w̄∗, tk).

Overall, the tracing algorithm makes a total of O(`) calls to the pirate decoder PD . Using Tardos’s
t-collusion resistant code we have ` = O(t2 log(n/ε)) = O(t2λ log n) and therefore the total number
of queries to PD is

PD queries = O
(
t2λ log(n)

)
We note that this tracing algorithm is minimal access as defined at the end of appendix A. That

is, the tracing algorithm does not need access to the decrypted message from PD . It only needs to
know whether the ciphertext was decrypted correctly. This is a useful property when tracing pirate
music players in practice — one only gets to observe whether the player plays the music or not.

3.1 Security

The following theorem shows that the traitor tracing system TT is t-collusion resistant, namely it
satisfies the security definition in Appendix A. For the public-key system E and a semantic security
adversary B we use SS Adv[B, E] to denote B’s advantage in winning the semantic security game
against E .

Theorem 1. Suppose E = (Genc , Eenc , Denc) is semantically secure and (Gtt , Ttt) is a t-collusion
resistant fingerprinting code. Then TT is a t-collusion resistant traitor-tracing system.

In particular, using the notation of Appendix A, for all t > 0, n > t, and all polynomial time
adversaries A, there exist semantic security adversaries B1 and B2 attacking E such that

MH Adv[A,TT (n)](λ) ≤ (2`) · SS Adv[B1, E](λ)

TR Adv[A,TT (n, t)](λ) ≤ ` · SS Adv[B2, E](λ) + ε +
`

|M|

where ` = O(t2λ log n) and ε = 1/(2λ).

The semantic security property (the bound on MH Adv[A,TT (n)] defined in Appendix A,
Game 1) is immediate. We bound the adversary’s advantage in winning the tracing game, namely
TR Adv[A,TT (n, t)] defined in Appendix A, Game 2. This will follow from Lemma 2 below. For
an adversary A in Game 2 we let w̄∗(A) denote the random variable representing the word w̄∗

constructed in step 2 in the tracing algorithm while tracing a pirate decoder PD created by A.

6

Lemma 2. With the notation as in Theorem 1, let C ⊆ Γ ⊆ {0, 1}` be the set of words corresponding
to the set of private keys in the adversary’s possession. Then for any adversary A in the tracing
game (game 2) there exists a semantic security adversary B attacking E = (Genc , Eenc , Denc) such
that

Pr[w̄∗(A) 6∈ F (C)] ≤ ` · SS Adv[B, E] + (`/|M|)

Proof. Consider a modified tracing algorithm that produces a word q̄∗(A) as follows. For all
j = 1, . . . , ` run the following experiment:

m
R←M

if all words in C have a 1 in position j do:

c0
R← Eenc

(
pk [j, 0], 0

)
, c1

R← Eenc

(
pk [j, 1], 0

)
else do:

c0
R← Eenc

(
pk [j, 0], m

)
, c1

R← Eenc

(
pk [j, 1], m

)
ĉ∗ ← (j, c0, c1)

m̂← PD(ĉ∗)

Define qj ∈ {0, 1} as: qj :=

{
0 if m = m̂, and
1 otherwise.

and q̄∗(A) := q1 . . . q`.

We say that position j is critical for A if all words in C contain the same symbol at position j.
We claim that Pr[wj 6= qj] must be negligible at all critical positions. In particular, for all critical
positions j ∈ {1, . . . , `} there is a semantic security adversary B for E such that

Pr[wj 6= qj] ≤ SS Adv[B, E] (3)

To see why, notice that when all bits at position j in C are 1 then A does not have sk [j, 0]. However,
if Pr[wj 6= qj] is non-negligible then A is able to distinguish Eenc

(
pk [j, 0], 0

)
from Eenc

(
pk [j, 0], m

)
,

which breaks semantic security of E . A similar argument applies when all bits at position j are 0.
Let bad be the event that there exists some critical coordinate j for which wj 6= qj . It follows

from (3) and the union bound that

Pr[bad] ≤ ` · SS Adv[B, E]

When event bad does not happen (i.e. w̄∗(A) and q̄∗(A) match at all critical positions) then
w̄∗(A) ∈ F (C) if and only if q̄∗(A) ∈ F (C). Hence, we obtain that∣∣ Pr[w̄∗(A) 6∈ F (C)]− Pr[q̄∗(A) 6∈ F (C)]

∣∣ ≤ Pr[bad] ≤ ` · SS Adv[B, E] (4)

To complete the proof we argue that Pr[q̄∗(A) 6∈ F (C)] ≤ `/|M|. There are two cases

• Consider a bit position j where all words in C have a 1 at position j. We argue that qj = 1
with high probability. For this j, the ciphertext ĉ∗ does not depend on m and therefore
running PD(ĉ∗) will output m with probability at most 1/|M|. We conclude that for this j
the probability that qj 6= 1 is at most 1/|M|.

7

• Consider a bit position j where all words in C have a 0 in position j. We argue that qj = 0.
For this j, the ciphertext ĉ∗ is a valid encryption of m and, since PD is a useful decoder,
PD(ĉ∗) will output m with probability 1. Hence, qj will always equal 0.

Summing over all bit positions we see that the probability that q̄∗(A) is inconsistent with C in any
critical position is at most `/|M|. It follows that

Pr[q̄∗(A) 6∈ F (C)] ≤ `/|M| (5)

Putting together equations (4) and (5) proves the lemma.

To complete the proof of Theorem 1 observe that when w̄∗(A) ∈ F (C) then Ttt(w̄∗(A), tk)
outputs a member of C with probability at least ε. Hence,

TR Adv[A,TT] ≤ ` · SS Adv[B, E] + ε + (`/|M|)

as required.

4 Tracing imperfect pirate decoders

Our definition of secure traitor tracing in Appendix A requires that the pirate produce a perfect
pirate decoder PD , namely a decoder that correctly decrypts all well-formed ciphertexts. In reality,
the pirate may be content with a decoder PD than works only a fraction of the time, say decrypts
only 10% of well-formed ciphertexts. When our tracing algorithm interacts with such a decoder
it may produce a word w̄∗ that is not in the adversary’s feasible set F (C) and consequently the
fingerprinting code may fail to trace.

For a given broadcast key bk , let δ be the probability that PD fails to decrypt well-formed
ciphertexts:

δ := Pr[m R←M, c
R← Encrypt(bk ,m) : PD(c) 6= m]

We call δ the error-rate of PD . Until now we focused on low-error pirates, namely when δ = 0.
To address imperfect decoders we define a more sophisticated tracing algorithm. For j = 1, . . . , `

define the following experiment denoted RobustTRj :

repeat the following steps λ ln ` times:

m
R←M

c0
R← Eenc

(
pk [j, 0], m

)
, c1

R← Eenc

(
pk [j, 1], 0

)
c∗ ← (j, c0, c1)
m̂← PD(c∗)

let pj be the fraction of times that m = m̂

repeat the following steps λ ln ` times:

m
R←M

c0
R← Eenc

(
pk [j, 0], m

)
, c1

R← Eenc

(
pk [j, 1], m

)
c← (j, c0, c1)
m̂← PD(c)

let qj be the fraction of times that m = m̂

8

Define wj ∈ {0, 1} as:

wj :=

0 if pj > 0 (then A must know sk [j, 0])
1 if pj = 0 and qj > 0 (then A must know sk [j, 1])
‘?’ otherwise (if pj = qj = 0)

and set w̄∗ := w1 . . . w`. The symbol ‘?’ at position j indicates that PD refuses to decrypt
all ciphertexts created for coordinate j. We know nothing about A’s knowledge of keys at this
position.

If the error-rate δ satisfies δ < (1/`)− (1/λ) then for all j = 1, . . . , ` we expect that qj > 0 and
therefore w̄∗ will contain no ‘?’ symbols. In this case w̄∗ is in the adversary’s feasible set F (C) and
consequently running Ttt(tk , w̄∗) will correctly identify one of the pirates in C. Consequently we
obtain a tracing algorithm that traces the pirate decoder PD as long as

δ < (1/`)− (1/λ).

4.1 Tracing imperfect decoders

To trace a decoder with high error-rate δ ∈ [0, 1) one needs a better fingerprinting code that
can trace words containing the ‘?’ symbol. A simple counting argument shows that, with high
probability, the maximum fraction of ‘?’ symbols in w̄∗ is close to δ; otherwise PD cannot correctly
decrypt a δ fraction of well-formed ciphertexts. Therefore, we need a fingerprinting code that can
trace words in {0, 1, ?}` that contain up to δ · ` question marks.

We extend the definition of collusion resistant fingerprinting from Section 2 to handle ‘?’ sym-
bols. First, for a set of words W ⊆ {0, 1}` we say that a word w̄ ∈ {0, 1, ?}` is feasible for W if
it is feasible for W when one considers only the non-‘?’ coordinates. We say that the extended
feasible set for W , denoted F?(W), is the set of all feasible words for W in {0, 1, ?}`.

Informally, we say that a fingerprinting code is δ-robust if the tracing algorithm can trace a
word w̄∗ ∈ {0, 1, ?}` that is feasible for a subset C and contains at most δ · ` symbols ‘?’, back to
a member of C. More precisely, we modify step 2 in the game used in Definition 1 as follows:

2. The adversary outputs a word w̄∗ ∈ F?(W) that contains at most δ · ` symbols ‘?’.

We let CR Adv[(G(n, ε, δ), T, C),A] be the probability that A wins the game and this quantity is
used in Definition 1. We say that the fingerprinting code is δ-robust if it satisfies Definition 1 for
this value of δ.

Robust fingerprinting codes. It remains to construct robust fingerprinting codes. There are
two relevant results in this direction, but unfortunately neither one is adequate:

• Boneh and Shaw [4] allow ‘?’ symbols in the word w̄∗, but only at non-critical coordinates
(i.e. coordinates where C is not all 0 or all 1). In our case, however, PD is free to cause a ‘?’
symbol to appear in any coordinate. As a result, this extension is not helpful here.

• Guth and Pfitzmann [13] consider fingerprinting codes where a δ-fraction of the coordinates
in w̄∗ are ‘?’. The ‘?’ locations, however, must be chosen independently of the attacker’s
view. In our case, A can instruct PD to adversarialy choose the location of ‘?’ symbols. For
example, the adversary may cause a ‘?’ to appear at all critical coordinates. Consequently,
this extension is not helpful either.

9

In the context of fingerprinting digital content, there was never a reason to study fingerprinting
codes that resist adversarial corruptions as is needed here. We construct such codes next.

4.2 Constructing robust fingerprinting codes

To trace high error-rate pirate decoders we construct a δ-robust fingerprinting code for any δ ∈ [0, 1).
Our construction is based on the fingerprinting codes of Boneh-Shaw [4]. We first briefly review
their construction.

The Boneh-Shaw codes. The fully collusion resistant code for n users is built from the following
set of n words Γ0, where each word consists of n + 1 blocks and each block is d-wide:

block 0 · · · block n
word 1: 0000 1111 1111 1111 1111
word 2: 0000 0000 1111 · · · 1111 1111
word 3: 0000 0000 0000 1111 1111

...
...

...
...

word n: 0000 0000 0000 · · · 0000 1111

(6)

The total codeword length is ` = d(n + 1). The code generator G picks a random permutation π
on (1, . . . , `) and permutes the columns of Γ0 according to π. It outputs the resulting n codewords
as the code Γ with tracing-key tk := π.

Let W be a subset of codewords in Γ that does not include codeword number i. Observe that
an adversary A who is given W , cannot distinguish columns belonging to block number i− 1 from
columns belonging to block number i. Therefore, one expects that the codeword w̄∗ generated by
A contains roughly the same number of ‘1’s in block i − 1 as in block i. In fact, if block i in w̄∗

contains many more ‘1’s that block i−1, then we can conclude that A can distinguish block i from
i− 1 and therefore A is in possession of codeword number i.

Suppose A is given words W ⊂ Γ and let w̄∗ ∈ F (W) be a codeword generated by A. For
i = 0, . . . , n let ai be the weight of the ith block of w̄∗, namely the number of 1s in block i.
Computing the quantities a0, . . . , an requires the tracing-key tk to undo the random permutation
π. Boneh-Shaw show that if there is a gap between block i and i− 1, namely

ai − ai−1 > ∆ where ∆ :=
√

d · log2(2n/ε) (7)

then A is in possession of codeword number i with probability at least 1 − (ε/n) (they actually
prove a stronger statement, but that is not needed for our discussion).

Equation (7) gives a tracing algorithm that does not accuse an innocent i: output all 1 ≤ i ≤ n
such that ai − ai−1 > ∆. However, we must ensure that there is always some i that satisfies (7).
Since w̄∗ ∈ F (W) we know that a0 = 0 and an = d and therefore there is some 1 ≤ i ≤ n for which
ai − ai−1 > d/n. If we ensure that d/n > ∆ then equation (7) will be satisfied for some 1 ≤ i ≤ n,
as required. To ensure d/n > ∆ we solve for d and obtain:

d ≥ dmin := 2n2 log2(2n/ε)

implying that the code length is ` = dmin · (n + 1) = O(n3 log(n/ε)). Overall, we trace w̄∗ to some
codeword used to create it and our tracing algorithm never outputs an empty set.

10

Making Boneh-Shaw δ-robust. Suppose A is given words W ⊂ Γ and let w̄∗ ∈ F?(W) be a
codeword generated by A that contains at most δ · ` symbols ‘?’. For i = 0, . . . , n let bi be the
number of ‘?’ symbols in block i of w̄∗. Let ai be the number of ‘1’s in block i of w̄∗.
We modify the original Boneh-Shaw tracing algorithm as follows.

step 1: use the tracing-key tk to compute ai and bi for all i = 0, . . . , n;
step 2: output all 1 ≤ i ≤ n such that ai+1 − ai > ∆ or bi+1 − bi > ∆.

The same logic as in the original algorithm shows that if the tracing algorithm outputs i then
codeword number i was used to create w̄∗ with probability at least ε/n. To see why, we re-iterate
that without codeword number i the adversary cannot distinguish columns in block i from columns
in block i− 1 and therefore cannot create a large gap between ai and ai−1 or between bi and bi−1.
Therefore, the existence of a gap indicates that codeword i was used to create w̄∗.

It remains to ensure that the modified tracing algorithm will not output the empty set. The
algorithm will output the empty set only if

ai+1 − ai ≤ ∆ and bi+1 − bi ≤ ∆ for all i = 1, . . . , n (8)

Moreover, we have the following facts:

• Since w̄∗ ∈ F?(W) we know that a0 = 0 (i.e. there can be no 1 in block 0)
and an + bn = d (i.e. there can be no 0 in block n).

• Since w̄∗ contains at most δ` symbols ‘?’, there must be some block 0 ≤ j ≤ n such that
bj ≤ δ`/(n + 1). Since ` = (n + 1)d we obtain bj ≤ δd.

Using (8) and a0 = 0 we deduce that an ≤ ∆n. Using (8) and bj ≤ δd we deduce that bn ≤ δd+∆n.
Therefore, if (8) holds then it must be that:

d = an + bn ≤ 2∆n + δd = 2n
√

d · log2(2n/ε) + δd (9)

If we choose d sufficiently large so that (9) is false then (8) cannot hold and the tracing algorithm
will output a non-empty set. Solving for d we obtain

dmin >
4n2

(1− δ)2
· log(2n/ε)

which leads to a code of length ` = O
(
(n3/(1− δ)2) · log(2n/ε)

)
.

We obtain a δ-robust fingerprinting code for any δ ∈ [0, 1). This in turn leads to a fully
collusion-resistant traitor-tracing system with constant size ciphertext and private keys of size `.
The tracing algorithm works by constructing w̄∗ using experiments RobustTRj and then running
the robust fingerprint tracing algorithm on w̄∗.

Our δ-robust code generalizes to t-collusion resistance as in [4]. For t-collusion resistance the
resulting code length is

` = O
(
(t4/(1− δ)2) · log n log(2n/ε)

)
.

11

5 Conclusions

We constructed a t-collusion resistant traitor tracing system where ciphertext size is independent of
n or t. The system makes use of advances in fingerprinting codes. For full collusion resistance one
can take t = n, without increasing the ciphertext size. Although ciphertexts are short, private-key
size is quadratic in t. Our tracing algorithm is blackbox and is based on repeated sampling of the
pirate decoder. Tracing time requires about O(t2λ) interactions with the pirate decoder.

Our tracing algorithm can trace both perfect and imperfect pirate decoders. To trace decoders
with error-rate δ we need to increase the size of the secret key to about O(n3λ/δ). The ciphertext
is still constant size. We trace high error-rate decoders using δ-robust fingerprinting codes which
we construct by extending the Boneh-Shaw fingerprinting codes.

References

[1] O. Berkman, M. Parnas, and J. Sgall. Efficient dynamic traitor tracing. In Proceedings of
SODA ’00, 2000.

[2] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 338–353, London, UK, 1999. Springer-Verlag.

[3] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Eurocrypt ’06, 2006. Full version available at http:
//eprint.iacr.org/2006/045.

[4] Dan Boneh and James Shaw. Collusion secure fingerprinting for digital data. IEEE Transac-
tions on Information Theory, 44(5):1897–1905, 1998. Extended abstract in Crypto ’95.

[5] Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and revoke sys-
tem with public traceability. In ACM Conference on Computer and Communication Security
(CCS), 2006.

[6] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor
tracing schemes. In EUROCRYPT, pages 542–558, 2005.

[7] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO ’94: Proceedings of the
14th Annual International Cryptology Conference on Advances in Cryptology, pages 257–270,
London, UK, 1994. Springer-Verlag.

[8] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE Transactions
on Information Theory, 46(3):893–910, 2000.

[9] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In Public Key Cryptography - PKC 2003, volume 2567 of LNCS,
pages 100–115, 2003.

[10] Amos Fiat and T. Tassa. Dynamic traitor tracing. In Proceedings of Crypto ’99, volume 1666
of LNCS, pages 354–371, 1999.

12

[11] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating traceability
and broadcast encryption. In CRYPTO ’99: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, pages 372–387, London, UK, 1999. Springer-
Verlag.

[12] M. T. Goodrich, J. Z. Sun, , and R. Tamassia. Efficient tree-based revocation in groups of
low-state devices. In Proceedings of Crypto ’04, volume 2204 of LNCS, 2004.

[13] H. Guth and B. Pfitzmann. Error- and collusion-secure fingerprinting for digital data. In
Information Hiding ’99, volume 1768 of LNCS, pages 134–145, 1999.

[14] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In Proceedings of Crypto ’02,
volume 2442 of LNCS, pages 47–60, 2002.

[15] Aggelos Kiayias and Moti Yung. On crafty pirates and foxy tracers. In ACM Workshop in
Digital Rights Management – DRM 2001, pages 22–39, London, UK, 2001. Springer-Verlag.

[16] Aggelos Kiayias and Moti Yung. Breaking and repairing asymmetric public-key traitor tracing.
In Joan Feigenbaum, editor, ACM Workshop in Digital Rights Management – DRM 2002,
volume 2696 of Lecture Notes in Computer Science, pages pp. 32–50. Springer, 2002.

[17] Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate. In EURO-
CRYPT ’02: Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, pages 450–465, London, UK, 2002. Springer-Verlag.

[18] K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes. In Proceed-
ings of Eurocrypt ’98, pages 145–157, 1998.

[19] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2):481–484, 2002.

[20] Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 41–62, London, UK, 2001. Springer-Verlag.

[21] Moni Naor and Benny Pinkas. Threshold traitor tracing. In CRYPTO ’98: Proceedings of the
18th Annual International Cryptology Conference on Advances in Cryptology, pages 502–517,
London, UK, 1998. Springer-Verlag.

[22] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In FC ’00: Proceedings of
the 4th International Conference on Financial Cryptography, pages 1–20, London, UK, 2001.
Springer-Verlag.

[23] B. Pfitzmann. Trials of traced traitors. In Proceedings of Information Hiding Workshop, pages
49–64, 1996.

[24] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In Proceedings
of the ACM Conference on Computer and Communication Security, pages 151–160, 1997.

[25] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. In Proceedings of Crypto
’00, volume 1880 of LNCS, pages 316–332, 2000.

13

[26] Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor tracing algorithms
using list decoding. In Proceedings of ASIACRYPT ’01, volume 2248 of LNCS, pages 175–192,
2001.

[27] Jessica N. Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial properties of
frameproof and traceability codes. Cryptology ePrint 2000/004, 2000.

[28] D. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes
and frameproof codes. SIAM Journal on Discrete Math, 11(1):41–53, 1998.

[29] D. Stinson and R. Wei. Key preassigned traceability schemes for broadcast encryption. In
Proceedings of SAC ’98, volume 1556 of LNCS, 1998.

[30] Gabor Tardos. Optimal probabilistic fingerprint codes. In Proceedings of STOC ’03, pages
116–125, 2003.

[31] V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear map. In
Proceedings of 2003 DRM Workshop, 2003.

[32] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient asymmetric public-key traitor
tracing without trusted agents. In Proceedings CT-RSA ’01, volume 2020 of LNCS, pages
392–407, 2001.

A Definition of Tracing Traitors

Initially, we view a pirate decoder PD as a probabilistic circuit that takes as input a ciphertext C
and outputs some message m or ⊥. A Traitor-Tracing system, then, consists of the following four
algorithms:

Setup(n, λ) The setup algorithm takes as input n, the number of users in the system, and the
security parameter λ. The algorithm outputs a public key bk , a secret tracing key tk , and
private keys sk1, . . . , skn, where sku is given to user u.

Encrypt(bk ,m) Encrypts m using the public broadcasting key bk and outputs ciphertext C.

Decrypt(j, sk j , C) Decrypt C using the private key sk j of user j. The algorithm outputs a mes-
sage m or ⊥.

TracePD(tk) The tracing algorithm is an oracle algorithm that is given as input the tracing key
tk . The tracing algorithm queries the pirate decoder PD as a black-box oracle. It outputs a
set S which is a subset of {1, 2, . . . , n}.

All these algorithms must run in polynomial time in λ and n. Moreover, the system must satisfy
the following correctness property:
for all j ∈ {1, . . . , n} and all messages m:

Let
(
bk , tk , (sk1, . . . , skn)

) R← Setup(n, λ) and C
R← Encrypt(bk ,m).

Then Decrypt(j, sk j , C) = m.

14

Security. We define security of the traitor tracing scheme in terms of the following two natural
games, called message-hiding and traceability.

Game 1. The first game is the standard Semantic Security Game. It says that the system
is semantically secure to an outsider who does not possess any of the private keys. Since this is a
standard notion we do not give the game details here. We denote the advantage of adversary A
in winning this game as MH Adv[A,TT (n)](λ).

Game 2. The second game captures the notion of Traceability against t-collusion. For a
given n, t, λ, the game proceeds as follows (both challenger and adversary are given n, t, and λ as
input):

1. The adversary A outputs a set T = {u1, u2, . . . , uj} ⊆ {1, . . . , n} of at most t colluding users.

2. The challenger runs Setup(n, λ) and provides bk and sku1 , . . . , skuj to A. It keeps tk to itself.

3. The adversary A outputs a pirate decoder PD .

4. The challenger now runs TracePD(tk) to obtain a set S ⊆ {1, . . . , n}. Note that Trace is only
given black-box oracle access to PD .

We say that the adversary A wins the game if the following two conditions hold:
• The decoder PD is useful. That is, for a randomly chosen m in the finite message space, we

have that
Pr[PD(Encrypt(bk ,m)) = m] = 1

• The set S is either empty, or is not a subset of T .

We denote by TR Adv[A,TT (n, t)](λ) the probability that adversary A wins this game.

Definition 2. We say that a Traitor Tracing system TT is t-collusion resistant if for all n > t and
all polynomial time adversaries A we have that MH Adv[A,TT (n)](λ) and TR Adv[A,TT (n, t)](λ)
are negligible functions of λ.

In Game 2 we require the pirate decoder PD to be perfect and decrypt all well-formed ci-
phertexts. We discuss imperfect pirate decoders in Section 4. Also note that we are modeling a
stateless (resettable) pirate decoder — the decoder is just an oracle and maintains no state between
activations. Non stateless decoders were studied in [15].

Minimal access decoders. The black-box tracing model described above is often called the full
access model — the tracer is given the decryptions output by PD . When the decoder PD is a
tamper resistant box, such as a music player, the tracer does not get direct access to decryptions;
it only sees whether a given ciphertext results in music being played or not. To address this issue
we define a more restricted black-box tracing model called minimal access tracing. This model is
similar to the game above with the exception that the challenger presents the tracing algorithm
with a more restricted oracle P(·, ·) which takes a message-ciphertext pair as input and outputs:

P(m, c) =
{

1 if PD(c) = m
0 otherwise

15

We then modify Step 4 of Game 2 above so that challenger runs TraceP(tk , ε) to obtain a set
S ⊆ {1, . . . , n}. Consequently, in the minimal access game the tracing algorithm is given far more
restricted access to PD . One can argue [2] that this model accurately captures the problem of
tracing a stateless tamper resistant decoder. It is not difficult to see that our tracing algorithm
works in the minimal access model.

16

